Triethylsilane−**Indium(III) Chloride System as a Radical Reagent**

Naoki Hayashi, Ikuya Shibata, and Akio Baba*

*Department of Molecular Chemistry, Science and Technology Center for Atoms, Molecules and Ions Control (STAMIC), Graduate School of Engineering, Osaka Uni*V*ersity, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan*

baba@chem.eng.osaka-u.ac.jp

Received October 18, 2004

2004 Vol. 6, No. 26 ⁴⁹⁸¹-**⁴⁹⁸³**

A novel generation method of indium hydride (Cl2InH) was found by the transmetalation of InCl3 with Et3SiH. In the intramolecular cyclization of enynes, the previously reported system (NaBH4−**InCl3) has a problem of side reactions with the coexistent borane. In contrast, the problem was solved by the presented system, which affords effective hydroindation of alkynes.**

The use of radical reactions in modern organic synthesis is now well-established.1 Despite the many well-documented advantages of free-radical chain reactions in organic chemistry, the majority of examples still rely on the use of tri n -butyltin hydrides.^{2,3} Hence, a major area of current research is the development of processes that seek to either alleviate the problems associated with toxic tin residues or remove the need for tin completely. 4 With a potential similar to that of Bu₃SnH, dihalogenoindium hydrides (X_2InH) have been recently found by us and other groups to be novel reagents that were generated by the transmetalation of indium (III) trihalides (InCl₃ or InBr₃) with metal hydrides.⁵⁻⁷ At first, Bu₃SnH was employed as a hydride source,⁵ and then it was replaced by NaBH4 ⁶ and DIBAL-H.7 While the advances

10.1021/ol047849v CCC: \$27.50 © 2004 American Chemical Society **Published on Web 12/01/2004**

have been significant, all suffer from the strong reducing ability of the hydride sources themselves. All the hydrides employed could reduce a variety of functionalities without any assistance of Lewis acids or catalysts. In the case of NaBH₄-InCl₃, although we could achieve intramolecular cyclization and intermolecular coupling reactions initiated by dehalogenation,⁶ the generation of $BH₃$ during transmetalation becomes a serious problem. Therefore, an alternative hydride source that causes no side reactions should be developed. Considering this background, Et₃SiH is a good candidate, and we already found weak ionic interactions

^{(1) (}a) *Radicals in Organic Synthesis*; Renaud, P., Sibi, M. P., Eds.; Wiley-VCH: Weinheim, 2001; Vols. 1 and 2. (b) Samir, Z. Z. *Radical Reactions in Organic Synthesis*; Oxford University Press: Oxford, 2003.

⁽²⁾ For tin hydride reviews, see: (a) Pereyre, M.; Quintard, J.-P.; Rahm, A. *Tin in Organic Synthesis*; Butterworth: London, 1987. (b) RajanBabu T. V. In *Encyclopedia of Reagents for Organic Synthesis*; Paquette, L.,

Ed.; Wiley: New York, 1995; Vol. 7, p 5016.
(3) For examples of Bu₃SnH-initiator systems (Bu₃SnH-Et₃B, Bu₃SnH-(3) For examples of Bu3SnH-initiator systems (Bu3SnH-Et3B, Bu3SnH-9BBN, Bu₃SnH-CuCl, and Bu₃SnH-ZnEt₂), see: (a) Miura, K.; Ichinose, Y · Nozaki K · Fugami K · Oshima K · Utimoto, K *Bull, Chem. Soc* Y.; Nozaki, K.; Fugami, K.; Oshima, K.; Utimoto, K. *Bull. Chem. Soc. Jpn.* **¹⁹⁸⁹**, *⁶²*, 143-147. (b) Perchyonok, V. T.; Schiesser, C. H. *Tetrahedron Lett.* **¹⁹⁹⁸**, *³⁹*, 5437-5438. (c) Ooi, T.; Doda, K.; Sakai, D.; Maruoka, K. *Tetrahedron Lett.* **¹⁹⁹⁹**, *⁴⁰*, 2133-2136. (d) Ryu, I.; Araki, F.; Minakata, S.; Komatsu, M. *Tetrahedron Lett.* **¹⁹⁹⁸**, *³⁹*, 6335-6336.

⁽⁴⁾ For reviews see: (a) Studer, A.; Amrein, S. *Synthesis* **²⁰⁰²**, 835- 849. ((TMS)3SiH): (b) Chatgilialoglu, C. *Acc. Chem. Res.* **¹⁹⁹²**, *²⁵*, 188- 194. Cyclohexadienyl-silane: (c) Studer, A.; Amrein, S. *Angew. Chem., Int. Ed.* **²⁰⁰⁰**, *³⁹*, 3080-3082. Tri-2-furanylgermane: (d) Nakamura, T.; Yorimitsu, H.; Shinokubo, H.; Oshima, K. *Synlett* **¹⁹⁹⁹**, 1415-1416. Gallium hydride: (e) Takami, K.; Mikami, S.; Yorimitsu, H.; Shinokubo, H.; Oshima, K. *Tetrahedron* **²⁰⁰³**, *⁵⁹*, 6627-6635. Schwartz reagents: (f) Fujita, K.; Nakamura, T.; Yorimitsu, H.; Oshima, K. *J. Am. Chem. Soc.* **²⁰⁰¹**, *¹²³*, 3137-3138.

⁽⁵⁾ We have already reported that indium hydrides act as both radical and ionic reagents in the reaction with a variety of halides, carbonyls, imines, and carbon-carbon multiple bonds. (a) Miyai, T.; Inoue, K.; Yasuda, M.; Shibata, I.; Baba, A. *Tetrahedron Lett.* **¹⁹⁹⁸**, *³⁹*, 1929-1932. (b) Inoue, K.; Sawada, A.; Shibata, I.; Baba, A. *Tetrahedron Lett.* **²⁰⁰¹**, *⁴²*, 4661- 4663.

⁽⁶⁾ Inoue, K.; Sawada, A.; Shibata, I.; Baba, A. *J. Am. Chem. Soc.* **2002**, *¹²⁴*, 906-907.

⁽⁷⁾ Takami, K.; Yorimitsu, H.; Oshima, K. *Org. Lett.* **²⁰⁰²**, *⁴*, 2993- 2995.

between $Et_3SH-InCl₃$ ⁸ Herein we report the first application
of Et_3SH in a radical reaction via the generation of an indium of Et3SiH in a radical reaction via the generation of an indium hydride.

Initially, we performed the reduction of alkyl halide **1a** by $Et_3SH-InCl_3$ in optimized conditions of our previous systems such as $Bu_3SnH-InCl₃⁵$ and $NaBH_4-InCl₃⁶$ (Table 1 entries 1 and 2). The reduction proceeded in moderate 1, entries 1 and 2). The reduction proceeded in moderate

Laviv 1.	α incontration of Figures by a $m_{\ell-11}$ -fitch by section				
	RX 1	InCl ₃ (0.1 mmol) Mt -H (1 mmol) Solvent (2 mL), rt, 2 h		RH $\overline{\mathbf{2}}$	
entry	RX	$Mt-H$	solvent	product	yield $(\%)$
1	1a Вr	Bu_3SnH	THF	2a	82
$\overline{2}$	1a	NaBH_4	MeCN	2a	78
3	1a	Et ₂ SiH	MeCN	2a	32
4^a	1a	Et_3SiH	MeCN	2a	39
5	1a	Et ₃ SiH	CH ₂ Cl ₂	2a	9
6^a	1a	Et_3SiH	CH ₂ Cl ₂	2a	49
7^a	1a	Et_3SiH^c	CH ₂ Cl ₂	2a	83
8^a	1b	Et_3SiHc	MeCN	2b	20
$9^{a,b}$	1b	Et_3SiHc	MeCN	2b	67

Table 1. Reduction of Halides by a *Mt*-H-InCl₂ System

 a Et₃B (0.1 mmol) was added. b InCl₃ (1 mmol) was used. c Et₃SiH (2 mmol) was used.

yield at room temperature in MeCN to afford **2a** (entry 3). In the presence of Et3B as a radical initiator, the yield of **2a** was slightly increased (entry 4), while in CH_2Cl_2 , Et_3B was essential for the reaction (entries 5 and 6). When 2 mmol Et3SiH was used, **2a** was obtained in good yield (entry 7). In the reaction of the less reactive aryl iodide **1b**, a catalytic amount of $InCl₃$ was less effective (entry 8), but the use of equimolar InCl₃ afforded dehalogenation to give benzene $(2b)$ in 67% (entry 9). The use of $InCl₃$ catalyst is essential because no reduction took place in the absence of InCl3. As Et₃SiH has no radical reactivity,⁹ indium hydride is a plausibly reactive species. In our Bu₃SnH-InCl₃ and NaBH₄-InCl₃ systems, various alkyl halides were reduced with a catalytic amount of InCl₃ without any initiators.^{5,6} Although the exact reason Et_3B and equimolar $InCl_3$ are necessary in the $Et_3SiH-InCl_3$ system is not clear yet, this may be due to the low concentration of indium hydride because the transmetalation of $Et_3SH-InCl_3$ is slow,⁸ especially in CH_2 - $Cl₂$.

Under the optimized conditions, radical cyclizations from haloalkenes were performed effectively (Scheme 1, eqs 1 and 2). Intermolecular radical addition could be accomplished effectively to give **4c** (eq 3).

In the next stage, we performed the reaction with alkynes. For example, hydrostannation of alkynes is often accelerated by radical initiators such as UV irradiation, AIBN, $Et₃B$, and ultrasound.10 An indium hydride is also expected to perform hydroindation of alkynes due to its radical reactivity. When N aBH₄ $-$ InCl₃⁶ was allowed to react with alkynes, not only
hydroindation, but also side reactions occurred by BH₂ hydroindation but also side reactions occurred by BH₃ generated in situ.¹¹ In contrast, Et₃SiH, an alternative hydride source that causes no side reactions, was used in the reactions with alkynes (Table 2). In the reduction of **5a**, product **6a** was obtained in 90% yield in MeCN (entry 1). Under the

⁽⁸⁾ We have recently developed a $Et_3SiH-InBr_3$ system that alternatively afforded ionic reactions such as reductive aldol reaction of enones. Shibata, I.; Kato, H.; Ishida, T.; Yasuda, M.; Baba, A. *Angew. Chem., Int. Ed.* **2004**, *⁴³*, 711-713.

⁽⁹⁾ Banfi, L.; Narisano, E.; Riva, R. In *Encyclopedia of Reagents for Organic Synthesis*; Paquette, L., Ed.; Wiley: New York, 1995; Vol. 7, pp 4522.

same conditions, aliphatic alkyne **5b** was reduced to alkene **6b** in 59% yield (entry 2). Propargylic ether and internal alkynes **5c** and **5d** were effectively reduced to **6c** and **6d**, respectively (entries 3 and 4). $Et_3SiH-InCl_3$ also reduced alkynyl ester **5e** to **6e** without affecting the ester moiety (entry 5).

We next performed representative cyclization of enynes. Allylpropargylmalonate (**7a**) underwent cyclization to give *exo*-methylene compound (**8a**) in 53% yield at 0 °C for 2 h (Scheme 2, eq 4).¹² This reaction involves the cyclization of the generated vinyl radical to the remaining alkene (Scheme 3). The $Et_3SiH-InCl_3$ system is superior to NaBH₄-InCl₃ in which linear compound 9a was obtained as a major product (eq 5). This would be because of NaBH₄ $-$ InCl3, which resulted in the occurrence of hydroboration. In

contrast, as shown Scheme 3, the transmetalation of Et_3SiH- InCl₃ gives Et₃SiCl as a byproduct, which has no reducing ability to alkynes. The reaction of *N*-tosyl allylpropargylamine (**7b**) gave nitrogen heterocycle **8b** in 58% yield (eq 6).

In conclusion, the indium hydride generated from $Et₃SiH$ and InCl₃ is a promising alternative to the Bu₃SnH system. The reducing system has several advantages in terms of convenience, low toxicity, and mild conditions, and $InCl₃$ and Et3SiH in particular are readily available and easy to handle.

Acknowledgment. This research has been carried out at the "Handai Frontier Research Center" and was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture.

Supporting Information Available: Experimental details and characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.

OL047849V

^{(10) (}a) Leusink, A. J.; Budding, H. A. *J. Organomet. Chem.* **1968**, *11*, ⁵³³-539. (b) Nozaki, K.; Oshima, K.; Utimoto, K. *Bull. Chem. Soc. Jpn.* **¹⁹⁸⁷**, *⁶⁰*, 3465-3467. (c) Nakamura, E.; Machii, D.; Inubishi, T. *J. Am. Chem. Soc.* **1989**, *111*, 6849–6850.
(11) When NaBH₄–InCl₂⁶ was a

⁽¹¹⁾ When NaBH₄ $-$ InCl₃⁶ was allowed to react with phenylacetylene
(1) styrene (6a) was obtained in 68% yield in MeCN at -30 °C in the (5a), styrene (6a) was obtained in 68% yield in MeCN at -30 °C in the presence of a radical initiator, Et₃B. The reduction scarcely proceeded in the absence of Et₃B under the same conditions. One of the serious problems of NaBH₄ $-$ InCl₃ system is the generation of BH₃ in the transmetalation, which was found to promote hydroboration. Indeed, even in the conditions promoting no hydroindation, namely, in the presence of a radical scavenger $(p$ -dinitrobenzene) and in the absence of Et₃B, 23% of the product **6a** was still obtained by the hydroboration of **5a** at room temperature. This result suggests that the NaBH4-InCl3-promoted reaction at room temperature includes hydroboration besides the $Cl₂Inf$ -promoted radical hydroindation. From these reasons, the NaBH₄-InCl₃ must be carried out below -30 °C to effect hydroindation as the sole reaction.

⁽¹²⁾ **Typical Experimental Procedure of the Reduction of Enyne.** The 10 mL round-bottom flask charged with InCl3 (0.442 g, 2.0 mmol) was heated at 110 °C under reduced pressure for 1 h. After the system was filled with nitrogen, MeCN (4 mL) and Et₃SiH (2.0 mmol) were added and the mixture was stirred at 0 °C for 5 min. Then enyne **7a** (1.0 mmol) and 1 M Et3B in hexane (0.1 mL) were added, and the resulting mixture was stirred at 0 °C for 2 h. After deionized water was added, the reaction mixture was extracted with ether (10 mL x 3). The combined organic layer was dried over MgSO₄ and concentrated. The crude mixture was purified by column chromatography to give cyclization product **8a** (0.127 g, 53%).